a collocation method for solving nonlinear differential equations via hybrid of rationalized haar functions
Authors
abstract
hybrid of rationalized haar functions are developed to approximate the solution of the differential equations. the properties of hybrid functions which are the combinations of block-pulse functions and rationalized haar functions are first presented. these properties together with the newton-cotes nodes are then utilized to reduce the differential equations to the solution of algebraic equations. the method is computationally attractive, and applications are demonstrated through illustrative examples.
similar resources
HYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...
full texthybrid of rationalized haar functions method for solving differential equations of fractional order
abstract. in this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized haar functions. for this purpose, the properties of hybrid of rationalized haar functions are presented. in addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...
full textSolution of nonlinear Volterra-Fredholm-Hammerstein integral equations via a collocation method and rationalized Haar functions
Rationalized Haar functions are developed to approximate the solution of the nonlinear Volterra–Fredholm–Hammerstein integral equations. The properties of rationalized Haar functions are first presented. These properties together with the Newton–Cotes nodes and Newton–Cotes integration method are then utilized to reduce the solution of Volterra–Fredholm–Hammerstein integral equations to the sol...
full textHybrid of Rationalized Haar Functions Method for Mixed Hammerstein Integral Equations
A numerical method for solving nonlinear mixed Hammerstein integral equations is presented in this paper. The method is based upon hybrid of rationalized Haar functions approximations. The properties of hybrid functions which are the combinations of block-pulse functions and rationalized Haar functions are first presented. The Newton-Cotes nodes and Newton-Cotes integration method are then util...
full textThe Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model
This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...
full textNumerical Solution to Differential Equations via Hybrid of Block-pulse and Rationalized Haar Functions
Many different bases functions have been used to estimate the solution to differential equations, such as orthogonal bases [3, 4, 14, 15], wavelets [7–8] and hybrid [2, 13, 16–17]. The various systems of orthogonal functions may be classified into two categories. The first is piecewise continuous function (PCBF) to which the orthogonal systems of Walsh functions [5], Block-pulse functions [4, 1...
full textMy Resources
Save resource for easier access later
Journal title:
علومجلد ۱۸، شماره ۴۴، صفحات ۲۲۳-۲۳۱
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023